

The Influence of Sandblasted, Large grit, Acid-etched (SLA) Titanium Surface Modification for Enhanced Osteoblast and Macrophage Responses

INTRODUCTION/BACKGROUND bone segment screw 0320 protein MO rough surface rough surface **Immediate Response** Figure 2: Mechanism of tissue healing mediated by a rough surface. Illustration: Dr. Hagner Andrade Negative Control RAW 264.7 Macrophages 7 days, 10x10³ cells, 24- well plate **M1 M2 NFATc2 translocation RANK and DC-STAMP expression**

37°C, 95%

CO2,

(5%

- •Titanium (Ti) hardware in diabetic limb salvage are often highly polished surfaces.
- •36% complication rate in Charcot surgery with most due to aseptic failure (Ha et al., 2020)
- •The ideal Ti surface topography for diabetic foot surgery is still undefined.
- •Ti surface modifications could decrease breakage and dislocation to 5% and 0% respectively (Mehlhorn et al., 2019) Non-union

Figure 1: Aseptic failure of a Ti-screw. Illustration: Dr. Andrade

Osteoblasts

Cell seeding

- 5×10^3 cells
- 96 and 24-well plate
- 48 hours
- 100uL and 500uL of DMEM 5% CO2, 95% humidity, 37°C

Colorimetric MTS Assay Determining Cell Viability

A 6.0	666	000	0000
BOG	666	666	000
0	666		
DGG	000		
C O O	666	000	
	666		
IOA			000

Add 20uL of MTS reagent to 100uL of media to the wells for 4 hours of incubation humidity).

Reading at 490nM

UT Health RioGrande Valley Amayrani Sanchez^{1*}, Peter Elvin^{1,2*}, Deborah Rocha Seixas³, Krishna Prajapati², Danieli Rodrigues², Claudia Biguetti^{1,2} 2. Department of Biomedical Engineering, Erik Jonson School of Engineering and Computer Sciences, University of Texas at Dallas **Regenerative Medicine** 3. Department of Surgery, School of Dentistry, Universidade de Sao Paulo **Research Laboratory**

> Figure 4: RAW 264.7 macrophages cultured on the surface of different Ti discs. Cells are stained with DAPI for the nucleus in blue, NFATc2 in green with FITC fluorophore, and DC-STAMP with TRITC in red.

Figure 5: RAW 264.7 macrophages culture on the surface of different Ti discs. Cells are stained in red with TRITC for RANK and DAPI in blue for the nucleus.

Osseous Healing

RESULTS

Figure 6: MC3T3 cells are stained with beta-actin FITC fluorophore and DAPI staining of the nucleus for morphology. Scale bar of 125uM.

CONCLUSION and FUTURE WORK

HYPOTHESIS

Enhancing the microtopography of titanium (Ti) through SLA (sandblasted, large grit, and acidtreatment may enhance cellular responses, potentially improving outcomes in reconstructive procedures.

Figure 3: Hypothesis of the surface modulating M2 macrophages and osteogenic responses. Illustration: Dr. Hagner Andrade

These results highlight the beneficial effects of SLA surface in promoting cell proliferation and activating immunomodulatory pathways. Further studies are necessary to explore the long-term impacts of these surface treatments in clinical settings

REFERENCES

1. Ha J, Hester T, Foley R, Reichert ILH, Vas PRJ, Ahluwalia R, Kavarthapu V. Charcot foot reconstruction outcomes: A systematic review. J Clin Orthop Trauma. 2020 May-Jun;11(3):357-368. doi: 10.1016/j.jcot.2020.03.025. Epub 2020 Apr 20. PMID: 32405193; PMCID: PMC7211810. 2. Mehlhorn, A. T., Ugland, K. I., Hörterer, H., Gottschalk, O., Südkamp, N., & Walther, M. (2020). A high-profile thread with grit-blasted and acid-etched surface reduces loosening of medial column fusion bolt in instable Charcot foot. Foot and ankle surgery : official journal of the European Society of Foot and Ankle Surgeons, 26(6), 637-643. https://doi.org/10.1016/j.fas.2019.08.004 Advisor: claudia.biguetti@utrgv.edu

Students: amayrani.sanchez01@utrgv.edu, peter.elvin01@utrgv.edu